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The metal–insulator transition, a quantum phase transition signifying the natural
transformation of a metallic conductor to an insulator, continues to be the focus of
intense inquiry and debate. The first discussion of the heuristic differences between
metals and insulators, and implicitly the critical conditions for the transition between
these canonical electronic regimes, dates back to the dawn of the twentieth century.
As we approach the end of the century, the precise nature of the metal–insulator
transition remains one of the major intellectual challenges in condensed matter sci-
ence. In this article we present a brief introduction to just some of the key underlying
features of this enduring physical phenomenon. The following articles and discussion
present a detailed current account of the many facets of the science of the metal–
insulator transition.

Keywords: metal–non-metal transition; metal–insulator transition; minimum
metallic conductivity; electrical conductivity; electron–electron interactions

1. The metallic and non-metallic states of matter

The electrical conductivity of solids ranges from at least 109 Ω−1 cm−1 for a pure
metal such as copper at liquid helium temperatures to at most 10−22 Ω−1 cm−1 for
the best insulators or non-metals at this same base temperature. Bardeen (1940) and
later McMillan (1963) first drew attention to these vast differences in electrical con-
ductivity separating the metallic and non-metallic states of matter, and commented
that this variation, amounting to a factor of at least 1031, probably represents the
widest variation for any (laboratory-measurable) physical property (see also Ehren-
reich 1967).

The fundamental issue as to precisely why certain materials are excellent conduc-
tors, while others patently are not, has a long and venerable history (Mott 1985)
dating back to the dawn of the 20th century. More recently, Feynman et al. (1964)
alluded to these same issues in his celebrated Lectures on Physics, noting ‘some
materials are electrical “conductors”, because their electrons are free to move about;
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6 P. P. Edwards and others

Figure 1. An artist’s impression of the metal–insulator transition at zero temperature, whereby
itinerant (delocalized) electrons become localized at individual sites; here the system transforms
from a metal (σ(T = 0 K) 6= 0) to an insulator (σ(T = 0 K) = 0).

others are insulators, because their electrons are held tightly to individual atoms. We
shall consider later how some of these properties come about, but that is a very com-
plicated subject.’ If the existence of metals versus insulators is indeed a ‘complicated
subject’, the issue of how each phase can transform into the other, the metal–insulator
transition, is equally daunting. And yet, remarkably, there are countless examples
in nature where metals, those magnificent conductors of electricity (Cottrell 1992),
can be continuously transformed into stubbornly resistive insulators, and vice versa
(Mott 1974, 1990; Edwards & Rao 1985, 1995). The metal–insulator transition, the
process of physically and chemically transforming a metal into an insulator, and vice
versa, has so far proven surprisingly recalcitrant to a complete theoretical analysis
(Edwards et al. 1995).

At present the subject continues to thrive and develop; it represents a perfect
example of a wide-ranging complex and fundamental, but unresolved, scientific ques-
tion in condensed matter science. For how can we begin to understand the microscop-
ic process, or processes, by which a highly conducting material containing ca. 1023

free, or itinerant, electrons, all jostling and interacting with one another in the most
complicated ways (Cottrell 1997), can suddenly transform to a situation in which
every single one of these itinerant electrons now finds itself localized and completely
bound to an individual atomic site in an insulator (figure 1)?

In this short introductory article we will briefly discuss just some of the underlying
physical concepts, ideas and models relating to the transformation of a metal to an
insulator, or equivalently, an insulator into a metal. Many of the founding insights
and major developments originate from the seminal contributions of Sir Nevill Mott
to the intriguing problem of the metal–insulator transition (Mott 1937, 1949, 1956,
1958, 1961, 1974, 1985, 1990).

The history of the subject of the metal–insulator transition can be broadly clas-
sified into two avenues of development. First, there is the continual effort both to
locate and to describe precisely the actual transition point between these two canon-
ical electronic regimes (Mott 1990; Edwards & Rao 1995; Edwards et al. 1995). As
noted recently by Ramakrishnan (1995), such evolutionary advances of this first kind
can often be eclipsed by a second kind of development; namely, major and unexpected
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The metal–insulator transition 7

Figure 2. A representation of the intrinsic complexity, and hence the challenge, of the
metal–insulator transition; the various competing, and complementary, effects of electron
interactions, disorder and temperature. All experimental systems fall somewhere in the
three-dimensional space, away from the origin, which represents the zero-temperature non-dis-
ordered non-interacting situation. Taken from Logan et al. (1995).

experimental discoveries which initiate and dictate a reassessment and expansion of
the problem of the metal–insulator transition. Recent examples would be the discov-
ery of high temperature superconductivity in cuprates close to the metal–insulator
transition (for a review, see Iye 1995; Rao 1996; Edwards et al. 1995, 1998) and the
emergence of giant magnetoresistive effects in marginally metallic transition metal
oxides (for a review, see Rao 1996). This healthy synergy between theory and exper-
iment continues to be a characteristic hallmark of the subject of the metal–insulator
transition as we review it here.

2. How can we visualize the transition?

The deceptively simple task of describing and understanding the passage from the
metallic to the insulating regime (figure 1) still remains an enigma. Of course, part of
the problem and indeed the fascination is that any metal–insulator transition almost
certainly does not occur by a single mechanism but, instead, may arise from a variety
of competing, but complementary, electronic mechanisms. These involve the close
interplay of various contributing features, for example, disorder, electron–electron
interactions, screening, etc. (Mott 1974, 1990). Throw into this complex problem the
crucial role of temperature and the situation becomes even more interesting, and
even more taxing! The scale of the problem at hand is hinted at in figure 2, which
is a representation of three important facets of the problem, namely temperature,
electron–electron interactions and disorder (Logan et al. 1995). Here, the reader is
reminded that most of conventional band theory is confined to a single point at
the origin, the non-interacting non-disordered limit, typically representative of a
situation only at T = 0 K. We note also that all experimental systems lie away
from the origin (figure 2). In these regions the mechanism of electron localization
versus itinerancy depends critically upon the interplay and complementarity of these
contributing features (Mott 1974, 1990; Logan et al. 1995).

Interestingly, the more the intellectual pursuit moves to the consideration of the
actual transition point from metal to insulator (and vice versa), the greater the degree
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8 P. P. Edwards and others

of (apparent) sophistication and complexity necessary for any theoretical descrip-
tion. Paradoxically, it also transpires that simple, but highly effective criteria such
as the Mott metallization condition, the Mott minimum metallic conductivity, the
Herzfeld polarization catastrophe criterion, etc., have continually emerged as power-
ful paradigms for describing key features of the metal–insulator transition (Edwards
1995; Edwards et al. 1995). It must also be noted here that even the ‘simplest’ of
such theoretical models contain a surprising richness and subtlety that perhaps only
now is becoming apparent (Ashcroft 1993; Logan & Edwards 1985).

(a ) Polarization, ionization and screening
Probably the first quantitative attempt to explain the occurrence of metallic versus

insulating behaviour in a material, and with it the first discussion of the metal–
insulator transition, was made by Goldhammer (1913) and Herzfeld (1927). This
elegant rationalization, in terms of relevant atomic properties, which in a sense confer
metallic versus insulating status upon any element or material, leads to what is
commonly called the Goldhammer–Herzfeld criterion for metallization.

It is important to note that the Goldhammer–Herzfeld view of the metal–insulator
transition predates any quantum-mechanical description of the phenomenon, and is
based on the density-induced changes to the electronic polarizability (α) of a free
atom brought about by the presence of electric fields generated by neighbouring, and
distant, atoms within a condensed phase. With increasing elemental density, a critical
divergence in the electronic polarizability (and hence in the dielectric constant) is
predicted, causing the catastrophic release (or wholesale freeing) of all bound valence
electrons, with concomitant metallization and high electrical conductivity.

The Goldhammer–Herzfeld view can most profitably be viewed in terms of the
Claussius–Mossotti relationship (Herzfeld 1927; Edwards & Sienko 1982, 1983; Logan
& Edwards 1985),

(n2 − 1)
(n2 + 2)

=
R

V
, (2.1)

where n is the index of refraction (the high frequency dielectric constant), R is the
molar refractivity (4

3πNα), N is the Avogadro number and V is the molar volume.
Herzfeld (1927) argued that if we start with a polarizable atom in the gas phase
and transform it to the condensed liquid or solid phase, continuously increasing the
elemental density such that the ratio (R/V ) increases, then for the critical condition,
(R/V ) = 1, we have the equality (n2 − 1) = (n2 + 2), i.e. the dielectric constant
must now become infinite. This is the so-called polarization or dielectric catastrophe
whereby the valence electrons, which before had been quasi-elastically bound to their
parent atoms, are now spontaneously ionized and set free via the strong attractive
interactions with the multitude of other polarizable atoms in the dense liquid or
solid. The concept of the wholesale ‘freeing’ of valence electrons from their parent
(atomic) sites to form a metallic conductor has an attractive physical, chemical
and conceptual basis (Berggren 1974, 1978; Edwards & Sienko 1982, 1983; Logan
& Edwards 1985). Under such critical conditions we see the inability of individual
atoms to retain their valence electrons in the face of fierce competition from attractive
forces provided by the multitude of other atoms in the condensed phase (figure 1).
Clearly, the larger the atomic polarizability and the elemental density, the more
intense is this competition. This important link between atomistic (polarizability)
and elemental (density) considerations is beautifully captured in Herzfeld’s original
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paper (1927), entitled ‘On atomic properties which make an element a metal’. A clear
demonstration of the continuing utility of this attractive and powerful descriptor of
the metal–insulator transition is given in figure 3, which reveals how the simple
Herzfeld criterion can very effectively delineate between metals and insulators in the
periodic classification of the elements (Edwards & Sienko 1982, 1983).

This classical viewpoint also allows one readily to estimate the critical conditions
required for metallization of any element of the periodic classification, ifR is known to
a reasonable degree of accuracy and, of course, with V , the molar volume, determined
by the elemental density under the experimental conditions in question.

A recent important application of the Herzfeld criterion relates to the first ever
metallization of fluid, elemental hydrogen at high pressure (Weir et al. 1996; Hensel
& Edwards 1996a, b, c; Eggen et al. 1997). It has long been presumed that hydro-
gen at sufficiently high density (pressure) would eventually succumb to metallization
(Wigner & Huntingdon 1936). In figure 4, we show the measured electrical con-
ductivity (σ) for compressed fluid hydrogen (Weir et al. 1996) together with the
corresponding conductivities of the expanded alkali metal fluids rubidium and cae-
sium, all elements measured at comparable temperatures (2000–3000 K) over a wide
range of molar (atomic) densities (Hensel & Edwards 1996b, c).

It is manifestly obvious that all three of these group 1 elements of the periodic
classification undergo a continuous density-induced transition from an insulating to a
conducting state. In the case of fluid hydrogen at these high temperatures, pressures
close to 2 Mbar are necessary to effect the transition to the conducting state (Weir
et al. 1996). The ‘conventional’ alkali metals rubidium and caesium, unquestionably
metallic at room pressure and temperature, now continuously transform to a state
of exceptionally low electrical conductivity by expansion to low elemental density
(Freyland & Hensel 1985; Hensel 1996).

The predicted metallization densities derived from the Herzfeld criterion are
0.595 mol cm−3 (3.59 × 1023 cm−3) for hydrogen, 8.38 × 10−3 mol cm−3 (5.05 ×
1021 cm−3) for rubidium and 6.66 × 10−3 mol cm−3 (4.01 × 1021 cm−3) for caesium
(Hensel & Edwards 1996b, c). These estimates (represented by arrows for each ele-
ment in figure 4) are in excellent agreement with the experimental densities at which
the elements hydrogen, rubidium and caesium all attain a limiting value for the
electrical conductivity in the region of 2000 Ω−1 cm−1. This value is close to the
Ioffe–Regel value for the so-called minimum metallic conductivity (§2 c) of such a
high temperature fluid close to the metal–insulator transition (Mott 1974; Hensel &
Edwards 1996). The data (figure 4) and such considerations clearly demonstrate the
onset of the density-induced metallization in these elements at densities close to the
respective Herzfeld estimates. The relatively small value of α for atomic hydrogen
(0.67 Å3) prescribes the unusually high densities required for the metallization of flu-
id hydrogen. In contrast, the large polarizabilities for atomic rubidium (47.3 Å3) and
caesium (59.7 Å3) ensure that the heavier members of group 1 are already metallic
at elemental densities commensurate with room pressures and temperatures on this
planet.

Pauling (1983, personal communication) outlined a simple argument which goes
some way to explaining the undoubted success of the Herzfeld criterion (for a more
detailed discussion, see Logan & Edwards (1985)). He noted that the cube root of the
molar refractivity, R, can be approximated as a characteristic radius of the outermost
(valence) electrons in the isolated atom. If this radius is approximately equal to the
cube root of the molar (atomic) volume (V ), the outer orbitals from one atom will
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10 P. P. Edwards and others

Figure 3. The metallization of elements of the periodic classification under standard temperature
and pressure conditions. The figure shows the ratio (R/V ) for elements of the periodic classi-
fication. The shaded circles represent elements for which R and V are known experimentally.
The open circles are for elements for which only V is known experimentally and R is calculated.
Taken from Edwards & Sienko (1983).
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The metal–insulator transition 11

Figure 4. The measured electrical conductivity of fluid caesium, rubidium and hydrogen as a
function of the molar atom density m at a temperature of kT ∼ 0.15 eV. The arrows indicate the
predicted metallization densities for each element, based on the Goldhammer–Herzfeld model
(see text). Taken from Hensel & Edwards (1996b, c).

overlap with those from an adjacent atom and a ‘metallic orbital’ (Pauling 1938) will
ensue, with any covalent chemical bonds showing unsynchronized resonance (Pauling
1984), and the element becomes a metallic conductor.

It is also possible to establish a direct link between the Goldhammer–Herzfeld view
of the metal–insulator transition and that developed later by Mott (1949, 1956, 1961)
in relation to Thomas–Fermi screening and metallization (Edwards & Sienko 1983).
Approached from the metallic regime, the metal–insulator transition takes place
when the coulombic (attractive) potential (V (r)) of an electron–hole pair becomes
insufficiently screened via the sea of itinerant conduction electrons and a bound
localized state ensues (Mott 1961; Ashcroft 1993). Approached from the insulating
regime, this could also be viewed in terms of a polarization or dielectric catastrophe
at a critical electron (carrier) density (nc) when the coulombic potential binding the
electron–hole pair drops to zero; electrons are thereby ionized from their constituent
atoms or centres (figure 1) and metallization ensues (Edwards & Sienko 1983). Here
we have,

V (r) = −e2/εr, (2.2)
where ε is the effective dielectric constant of the system, and as n→ nc (= 3/(4πα)),
ε → ∞. Thus the binding energy of the localized electron–hole pair is now reduced
to zero at the critical carrier density, nc. The insulator–metal transition then takes
place at nc as the valence electrons become unbound (ionized) from their parent
(hole) sites.

Mott’s theory produced the simple but potent criterion,

n1/3
c a∗H ∼ 0.25, (2.3)
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Figure 5. The transition to the metallic state for fluid caesium, rubidium and hydrogen; the
dependence of the measured electrical conductivity on the Mott scaling parameter [n1/3a∗H].
The dotted line drawn at n1/3a∗H = 0.38 indicates the common metallization condition for these
three alkali elements. Taken from Hensel & Edwards (1996b, c).

for the critical conditions at the metal–insulator transition, where nc is again the
critical density of carriers and a∗H is a characteristic orbital radius of the localized
electron centre (Mott 1956, 1961). This venerable criterion, first developed over 35
years ago by Sir Nevill Mott for doped semiconductors, was extended by Edwards &
Sienko (1978) to encompass a wide range of experimental systems. The Mott criterion
is now known to provide an excellent guide to the location of the metal–insulator
transition for over ten orders-of-magnitude of nc (Edwards et al. 1995; Hensel &
Edwards 1996b). It is also recognized that the critical density for a polarization or
dielectric catastrophe (à la Herzfeld) is given by n

1/3
c a∗H ∼ 0.38; and this numerical

proximity also establishes a direct link with Mott’s theory (Bergrenn 1974, 1978;
Fritzsche 1978; Edwards & Sienko 1983).

A recent example of the application of the enduring Mott criterion can also be
found in the experimental metallization densities of hydrogen, rubidium and caesium
(Hensel & Edwards 1996b, c). In figure 5 we show the evolution of the density-induced
insulator–metal transition in these elements, showing the variation of the measured
electrical conductivity with the product [n1/3a∗H], where n is the electron density and
a∗H is now taken as the radius of the principle maximum in the charge density of the
respective valence orbital (e.g. 1s, 5s and 6s, for hydrogen, rubidium and caesium,
respectively).

The clear change in the slopes of σ versus n1/3a∗H at the computed Ioffe–Regel value
of the conductivity (σ ∼ 2000 Ω−1 cm−1) leads one to conclude that all three of these
high-temperature fluids become metallic at a constant value of the scaling parameter
n1/3a∗H ∼ 0.38. Thus, under the appropriate experimental conditions illustrated in
figure 5 (namely n1/3a∗H > 0.38) the three fluid elements, hydrogen, rubidium and
caesium, can unambiguously be identified as metallic, with hydrogen now assuming
its position as the lightest metal in the periodic classification of the elements (Hensel
& Edwards 1996a, b, c; Eggen et al. 1997).
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The metal–insulator transition 13

Figure 6. The potential energy of an electron within (a) a periodic field, and (b) a random
potential field. Here ∆ is the one-electron bandwidth in the absence of the random potential
field, V0. Adapted from Mott (1974).

(b ) Electron–electron interactions and disorder
Electronic states involved in charge (electron) transport are spatially extended in

a metal, but are localized in an insulator (figure 1). It is now known that electronic
localization can be initiated by static disorder (the so-called Anderson transition,
(Anderson 1958)), by strong electron–electron interactions or correlations (the so-
called Mott–Hubbard transition (Mott 1974; Hubbard 1963, 1964a, b)), or by strong
electron–lattice coupling (Mott 1974, 1990; Edwards & Rao 1985, 1995). It is also
abundantly clear that in all these instances the description of the electronic states
in the two limiting regimes, metal and insulator, are qualitatively different. Whilst
accurate descriptions have been developed over many years for the extreme (limiting)
situations of a metal and an insulator, it is inherently difficult to develop a unified
approach which naturally links both electronic regimes across the metal–insulator
divide. In addition, for the vast majority of experimental situations, more than one
of these individual electronic mechanisms will be operative (figure 2) and each one
may reinforce or complement another (Mott 1990; Logan et al. 1995; Edwards et al.
1995; Ramakrishnan 1995).

Turning first to the idea of localization due to disorder, it was originally pointed
out by Anderson (1958) that if the randomness in electronic-state energies at differ-
ent sites is large enough, electrons, presumed itinerant, become spatially localized.
Anderson (1958) used a model of a crystalline array of random potential wells to
demonstrate that, provided the disorder-induced potential fluctuations were suffi-
ciently large, an electron could be localized in a finite region of space (figures 6 and
7). Given that for weak levels of disorder, itinerant electrons diffuse, and for strong
disorder, they clearly do not, there must be a critical degree of disorder at which
an electron at a particular energy becomes localized in space, vis-à-vis, the system
becomes insulating, such that the DC electrical conductivity tends to zero as the
temperature approaches absolute zero (σ(T = 0 K)→ 0). The corresponding defini-
tion of a metal would therefore be σ(T = 0 K) 6= 0, representing a finite value of the
electrical conductivity at the absolute zero of temperature.

Thus, as the degree of disorder increases, a metallic conductor can continuously
transform into an insulator (Anderson 1958; Mott 1974). The critical energy sepa-
rating the band of metallic extended states from those of the localized states charac-
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14 P. P. Edwards and others

Figure 7. A typical wavefunction ψ in an Anderson lattice: (a) an extended wavefunction of Bloch
character, with an electronic mean free path far exceeding the separation between potential wells,
and ∆ � V0; (b) an extended wavefunction subject to a disorder potential and ∆ > V0; (c) a
weakly localized function for which ∆ ∼ V0. The overall form of the envelope function is sketched
in (c) for weak localization. Adapted from Mott (1974).

teristic of the insulator has been termed the mobility edge (Mott 1974). As disorder
and/or the electron density changes, the Fermi energy and the mobility edge can
coincide; this is the disorder-induced Anderson transition. In many instances, one
could justifiably say all instances, the individual effects of disorder must always
be considered alongside electron–electron interactions (e.g. as in the Mott–Hubbard
metal–insulator transition in, for example, the crystalline Hubbard model (Hubbard
1963, 1964a, b)).

The effects of such electron interactions are known to be particularly strong in
narrow-band systems and cause them to be insulating when they should be metallic
according to conventional band theory (Mott 1949, 1961). Well-known examples are
NiO and LaCuO4. The same basic problem can also be identified with all experimen-
tal systems traversing the metal–insulator transition. Typical examples would be the
highly expanded states of alkali metals, and doped semiconductors (for reviews see
Edwards & Rao 1985, 1995; Edwards et al. 1995).

To consider these issues within the context of these last two experimental sys-
tems, imagine, for example, a highly expanded alkali metal, such as rubidium, or a
hydrogenic (donor) impurity atom of phosphorus substitutionally doped into a host
semiconductor lattice (e.g. silicon). We discuss first the situation in which the lattice
constant of the resulting assembly is so large that each rubidium atom or phospho-
rus donor behaves as an isolated entity which does not interact with other atoms
or donors, respectively. To achieve genuine charge (electron) transport within this

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


The metal–insulator transition 15

assembly of neutral non-interacting atoms or donors requires the ionization of an out-
er valence electron from one of the sites and its transfer to another (neutral) site in the
assembly, i.e. the formation of charged ionic states. This aspect is formally embodied
within the so-called Mott–Hubbard correlation energy (U), which is the magnitude
of the energy difference between the ionization energy (I) and the electron affinity
(EA) of an isolated atom or donor; this energy, U (equal to I−EA), then represents
the extra energy cost of putting two electrons (instantaneously) on one atomic site
(Hubbard 1963, 1964a, b; Mott 1974, 1990). Since the magnitude of U is substantial
(and positive) in the limit of isolated non-interacting atoms or donors, compared to
other characteristic energies (including temperature), this highly expanded state of
the system is unquestionably an insulator, for which σ(T = 0 K) = 0.

At the opposite physical extreme of a small lattice constant, in our two cited
examples, this would correspond to elemental rubidium at high densities (figures 4
and 5) or heavily doped Si:P, there exists considerable orbital overlap between the
individual atomic or donor centres and the intersite electron transfer (or hopping)
is greatly facilitated. Such enhanced intersite transfer at small atom (donor)–atom
(donor) separations is manifest in a broadening of the one-electron band widths (∆).
Eventually this developing electronic band may become so wide that the band width
compensates for the Hubbard repulsion energy; under these conditions spontaneous
ionization from a neutral atom into states at the bottom of the band then occurs and
the material becomes a metal (σ(T = 0 K) 6= 0). Within this model, the criterion for
the metal–insulator transition is generally taken as ∆ ' U , with the precise form of
the equality depending upon the details of the geometry of the lattice of one-electron
states (Hubbard 1963, 1964a, b; Berggren 1978; Mott 1974).

The Mott–Hubbard correlation energy has previously been used to attempt a
ready demarcation of the naturally occurring elements of the periodic classification
into metals and insulators (figure 8). For example, Friedel (1984) has used the values
of U obtained from the difference between the first ionization energy of an atom and
its first electron affinity. On this basis, metallic elements within the periodic system
have values of the Hubbard U of about 10 eV or below, whereas atomic states for
which U is in excess of ca. 8–9 eV tend to give rise to non-metallic (insulating)
elements in the condensed phase under normal conditions. This is once again a good
indication of the importance of atomic properties in dictating the critical conditions
for the metallic versus non-metallic status of elements of the periodic classification.

Similar considerations can also be applied to chemical compounds, for example,
binary and ternary transition metal oxides (Morin 1958; Goodenough 1963, 1971).
The qualitative variation of the electron band width within the chemically similar
transition-metal monoxides (MO, M = Ti through Mn) was recognized some time
ago (Morin 1958) prior to any detailed quantum-mechanical calculations of the prob-
lem. Within the isostructural transition metal monoxide series one sees an emerging
metal–insulator transition arising from the competition between ∆ and U , but this
time with the transition initiated by chemical variations in these physical parameters,
with lattice constants showing relatively little change from TiO (dTi−Ti ∼ 2.94 Å)
to MnO (dMn−Mn ∼ 3.14 Å). Stoichiometric TiO appears to exhibit the properties
of itinerant electrons while the later members of the monoxide series have physi-
cal properties characteristic of localized electrons. Whether the d-electrons in these
and other transition metal oxides are localized or itinerant now depends critically
upon the magnitude of ∆ and U for d-orbitals on neighbouring cations (Goodenough
1971).
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Figure 8. A three-dimensional plot of the Hubbard U (= IE −EA), in eV, for various atoms of
the periodic classification of the elements. It can be seen that large (high) values of U correspond
to insulating elements at standard conditions whilst low values of U (typically below 8–10 eV)
delineate metallic elements.

In the first-row transition-metal monoxides, the slightly increased metal–metal
internuclear distance (e.g. from TiO to MnO), and the anticipated 3d orbital con-
traction is expected to reduce the electronic band width because the overlap of the
constituent wave functions will be siginficantly diminished. The combination of these
effects will result in an increase in the effective mass of the 3d electrons and a lower-
ing of their mobility. When the 3d band becomes extremely narrow (figure 9) it is no
longer meaningful to assign a width to the band, and the charge carriers can be best
considered to occupy discrete energy levels localized on the transition metal cations
(Morin 1958). It was first pointed out by de Boer & Verwey (1937) and Mott (1937,
1949) that this situation must exist in oxides such as MnO, CoO and NiO, which
are insulators when pure and stoichiometric and have room temperature resistivi-
ties exceeding 1010 Ω cm. Morin (1958) showed that a 3d band having appreciable
width exists in TiO and VO, whereas in the remaining transition-metal monoxides
the corresponding 3d wavefunctions are localized.

Thus, the so-called ‘NiO problem’, a paradox for over half a century (Mott 1937;
de Boer & Verwey 1937), can now be reconciled from a consideration of such periodic
trends. For example, the well-established 3d orbital contraction across the transition
metal series leads to a drastic reduction in the electron band width and a concomitant
increase in the (intrasite) Hubbard correlation energy (Morin 1958; Goodenough
1971).

As Mott has repeatedly stressed, the simultaneous occurrence of, and interplay
between, disorder and electron interactions is of cardinal importance; the true nature
of the metal–insulator transition cannot be understood in terms of either effect in
isolation (Mott 1974, 1985, 1990). This interplay between competing effects lies at
the very heart of the phenomenon. For example, in a disordered strongly interacting
system, Anderson localization due to disorder may tend to increase any local elec-
tron interaction effect (Ramakrishnan 1995). The problem of disordered interacting
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Sc Ti V Cr Mn (oxides)

3d
bandwidth

m*/m

Figure 9. A schematic representation of the variation in the 3d electronic bandwidth, and the
associated effective mass, m∗/m, of charge carriers for the transition element monoxides ScO
through MnO. The underlying variations in bandwidth and m∗/m relate to the orbital contrac-
tion of the valence 3d wavefunctions with increasing atomic number; this has a dramatic effect
on both ∆ and U as we have a transition from the metallic (ScO) to the insulating (MnO),
magnetic regime. Taken from Morin (1958).

systems at finite temperatures, is thus central to the nature of the metal–insulator
transition (Logan et al. 1995). The combination of figure 2, and the sketch shown
in figure 10, outlines the scale of the problem as applied to a real experimental
system. We see in the latter a two-dimensional representation of the situation in a
high-dielectric constant doped semiconductor (e.g. Si:P) at a donor concentration
just below nc (Holcomb 1995). The large physical dimensions of the isolated donor
or impurity ‘atom’ (approximately 17 Å in Si:P) in comparison with the nearest-
neighbour separation of two host silicon atoms (approximately 2.4 Å) means that, in
relation to electronic structure, the system is far removed from any idealized descrip-
tion of a regular ordered lattice of hydrogen-like atoms, even though the material
itself is perfectly crystalline. Indeed, the conducting metallic state is formed through
an overlapping (random) percolating network of phosphorus donor atoms at a critical
density of some 3.8 × 1018 atoms cm−3. Since there clearly exist differing configura-
tions of neighbours, with an inevitable spread of energy levels for electrons bound
at various impurity sites, we have a considerable degree of disorder, in the Anderson
sense. Similarly, electron–electron interactions (sketched out earlier) will always be
present in this prototype highly disordered system.

This is the complex and fascinating reality of the experimental framework in which
we must consider any Mott–Hubbard–Anderson models (Logan et al. 1955). It comes
as no surprise, therefore, to find that the detailed understanding and theoretical
description of this basic electronic phase transition remains a major challenge and a
focus of attention worldwide.

(c ) Electrical conductivity at the metal–insulator transition; the minimum metallic
conductivity

In any discussion relating to the nature of the metal–insulator transition, it is
important to say something about the anticipated value of the electrical conductivity
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Figure 10. A schematic two-dimensional representation of a high-dielectric constant, doped semi-
conductor (Si:P) at an impurity concentration just below nc, the critical density for the met-
al–insulator transition. The radius of each shaded circle is approximated as the Bohr radius
(a∗H) of the impurity, or donor phosphorus atom. The impurity system clearly forms a randomly
overlapped state at this composition close to the critical transition region. Taken from Holcomb
(1995).

Figure 11. A schematic illustration of the two possibilities of a continuous versus discontinuous
metal–insulator transition at zero temperature. The electrical conductivity should vanish at
the point at which the Fermi level of the system passes through the localization threshold Ec.
But does it vanish discontinuously (the solid curve) or smoothly (the dashed curve)? Here, the
minimum metallic conductivity, σmin, at the transition is also shown.

at the transition point. As with the precise location of the transition, this matter
continues to be the subject of intense debate.

Mott (1961) first proposed that the metal–insulator transition in a perfect crys-
talline material at T = 0 K is discontinuous (figure 11). He further argued that, at
the transition, there exists a minimum conductivity, σmin (Mott 1972), for which the
system can still justifiably be viewed as metallic, prior to the complete localization
of the gas of itinerant conduction electrons (figure 1).

Mott’s proposal (Mott 1972, 1982) was based on important arguments developed
earlier by Ioffe & Regel (1960) in relation to the breakdown of the theory of electronic
conduction in disordered semiconductors. Thus, in this Mott–Ioffe–Regel viewpoint,
conventional Boltzmann transport theory becomes meaningless when the character-
istic mean free path, l, of the itinerant conduction electrons becomes comparable
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to, or less than, the interatomic spacing, d. In fact, this assertion derived from the
proposal that the mean free path, according to its actual physical meaning, cannot
be shorter than the electron wavelength (approximately k−1

F ), where kF is the wave
vector at the Fermi surface.

The Mott–Ioffe–Regel mean free path, lMIR, under conditions of the minimum
metallic conductivity, is equal to d. At this critical condition we have d = dc. It then
follows from Mott (1974), that the electrical conductivity of the metallic state at the
metal–insulator transition (figure 11) cannot be smaller than the quantity σmin, where

σmin = CMott(e2/h)d−1
c , (2.4)

here CMott is a constant which includes specific considerations relating to disorder,
etc., and has a value in the region 0.01–0.05.

Mott’s concept, in essence, is that at zero temperature, the electrical conductivity
of the metallic state continuously decreases with increase of disorder, and, upon
reaching the value given by σmin, the conductivity drops discontinuously to zero.
Thus at zero temprature an itinerant (‘metallic’) conduction electron gas cannot
possess a value of the conductivity less than the appropriate minimum possible value.

Note, however, that σmin will be system different. This arises because dc (approx-
imately n

−1/3
c ), from the Mott criterion (equation (2.1)) is unique for each system.

When the critical conditions for metallization are reached, all carriers become itin-
erant. Clearly a system such as Si:P with nc ∼ 3 × 1018 electrons cm−3 will exhibit
a lower minimum metallic conductivity than, say, expanded rubidium, for which
nc ∼ 1021–1022 electrons cm−3. This important issue is further amplified shortly.

Abrahams et al. (1979) have, however, predicted a continuous metal–insulator
transition on the basis of a scaling theory of non-interacting electrons in a disor-
dered system, and their results question the very existence of σmin in both two and
three dimensions. The two possible scenarios for the form of the metal–insulator
transition at zero temperature are compared in figure 11. The electrical conductivity
at T = 0 K should vanish at the point at which the Fermi energy passes through
the localization threshold, Ec at the mobility edge. The fundamental question, still
unresolved after almost half a century of intense study, is whether the electrical
conductivity vanishes discontinuously (solid curve) or smoothly (the dashed curve)
at the transition? Today, a significant proportion of researchers appear to trust in
the idea of a continuous metal–insulator transition (Edwards & Rao 1995); this, of
course, within a model of non-interacting electrons. The concept of a discontinuous
transition, and the necessary existence of a minimum metallic conductivity, may still
be appropriate when electron–electron interactions are taken into account. Given the
ongoing controversy, Thouless’s unfortunate comment (1982) that σmin has been ‘one
of the creative errors that have helped the progress of science’ now seems to be, at
best, ill-judged and premature.

In spite of these difficulties, the concept of a minimum metallic conductivity con-
tinues to serve as a particularly useful experimental criterion for the metal–insulator
transition in what may be called ‘the high temperature limit’ (Edwards et al. 1995;
Rao 1996). The electrical conductivity at the metal–insulator transition, and nc the
critical density of carriers for such a transition can be related via

σmin = CMott(e2/h)n−3
c . (2.5)

In figure 12 we show the variation of σmin with nc for a range of systems, including
the high temperature superconducting layered cuprates (Edwards et al. 1995; Rao
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Figure 12. A (log–log) plot of the minimum metallic conductivity, σmin, against the critical
carrier density, nc, at the metal–insulator transition. The two straight lines correspond to val-
ues of σmin = 0.05(e2/h)d−1

c , and σmin = 0.025(e2/h)d−1
c . Adapted from Fritzsche (1978) and

Mott (1982), in Edwards & Sienko (1983). We also include recent data for high-temperature
superconducting cuprates (Rao 1996; Edwards et al. 1998).

1996). As first pointed out by Fritzsche (1978), σmin appears to represent satisfacto-
rily the value of electrical conductivity in a wide range of materials for experimental
conditions at which the activation energy for electrical conduction disappears.

3. Concluding remarks

The metal–insulator transition, a quantum phase transition at T = 0 K, is
caused and accompanied by a fundamental qualitative change in electronic struc-
ture (figure 1). From common experience, this is manifestly self-evident. However,
our detailed understanding of this most basic electronic transition, the transforma-
tion of metal to insulator, is still far from complete. Over 25 years ago Austin &
Mott (1970) noted ‘. . . there is as yet no generally recognized theory of what hap-
pens at the transition point’. Even today this statement is rigorously correct. The
metal–insulator transition, a subject initiated, inspired and led for over half a cen-
tury by Sir Nevill Mott, continues to be one of the foremost intellectual challenges
of condensed matter science.
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